Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 11(2): 231462, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38420629

ABSTRACT

For the 40 years after the end of commercial whaling in 1976, humpback whale populations in the North Pacific Ocean exhibited a prolonged period of recovery. Using mark-recapture methods on the largest individual photo-identification dataset ever assembled for a cetacean, we estimated annual ocean-basin-wide abundance for the species from 2002 through 2021. Trends in annual estimates describe strong post-whaling era population recovery from 16 875 (± 5955) in 2002 to a peak abundance estimate of 33 488 (± 4455) in 2012. An apparent 20% decline from 2012 to 2021, 33 488 (± 4455) to 26 662 (± 4192), suggests the population abruptly reached carrying capacity due to loss of prey resources. This was particularly evident for humpback whales wintering in Hawai'i, where, by 2021, estimated abundance had declined by 34% from a peak in 2013, down to abundance levels previously seen in 2006, and contrasted to an absence of decline in Mainland Mexico breeding humpbacks. The strongest marine heatwave recorded globally to date during the 2014-2016 period appeared to have altered the course of species recovery, with enduring effects. Extending this time series will allow humpback whales to serve as an indicator species for the ecosystem in the face of a changing climate.

2.
Sci Rep ; 13(1): 15180, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704666

ABSTRACT

Understanding the migratory patterns of large whales is of conservation importance, especially in identifying threats to specific populations. Migration ecology, including migratory destinations, movements and site fidelity for humpback whales (Megaptera novaeangliae) remain poorly studied in parts of the range of the Central America population, considered endangered under the United States Endangered Species Act. This study aimed to investigate the migratory destinations of humpback whales sighted at two study sites in Nicaragua, which are part of the Central America population. A ten-year photographic database of humpback whales observed off Nicaragua was combined with citizen science contributions and sightings from dedicated research programs. The resulting image collection was compared with available historical photo identifications and databases using an automated image recognition algorithm. This approach yielded 36 years of photographic identification totaling 431 recaptures in Nicaragua (2006-2008 and 2016-2021) and 2539 recaptures (1986-2020) in both feeding and breeding grounds of 176 unique individuals sighted in Nicaragua. Our results showed that photo-identified whales were recaptured between October and April in breeding grounds and year-round in feeding grounds between British Columbia and California, with peak recaptures between June and October. Our study provided first-time evidence on fine-scale site affinity of individual humpback whales within Nicaraguan waters and to other breeding and feeding grounds.


Subject(s)
Humpback Whale , Animals , Nicaragua , Plant Breeding , Central America , Algorithms , Cetacea
3.
Sci Rep ; 13(1): 10237, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353581

ABSTRACT

We present an ocean-basin-scale dataset that includes tail fluke photographic identification (photo-ID) and encounter data for most living individual humpback whales (Megaptera novaeangliae) in the North Pacific Ocean. The dataset was built through a broad collaboration combining 39 separate curated photo-ID catalogs, supplemented with community science data. Data from throughout the North Pacific were aggregated into 13 regions, including six breeding regions, six feeding regions, and one migratory corridor. All images were compared with minimal pre-processing using a recently developed image recognition algorithm based on machine learning through artificial intelligence; this system is capable of rapidly detecting matches between individuals with an estimated 97-99% accuracy. For the 2001-2021 study period, a total of 27,956 unique individuals were documented in 157,350 encounters. Each individual was encountered, on average, in 5.6 sampling periods (i.e., breeding and feeding seasons), with an annual average of 87% of whales encountered in more than one season. The combined dataset and image recognition tool represents a living and accessible resource for collaborative, basin-wide studies of a keystone marine mammal in a time of rapid ecological change.


Subject(s)
Humpback Whale , Animals , Artificial Intelligence , Pacific Ocean , Seasons
4.
Sci Rep ; 13(1): 4621, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944685

ABSTRACT

The cosmopolitan distribution of humpback whales (Megaptera novaeangliae) is largely driven by migrations between winter low-latitude breeding grounds and summer high-latitude feeding grounds. Southern Hemisphere humpback whales faced intensive exploitation during the whaling eras and recently show evidence of population recovery. Gene flow and shared song indicate overlap between the western (A) and eastern (B1, B2) Breeding Stocks in the South Atlantic and Indian Oceans (C1). Here, we investigated photo-identification evidence of population interchange using images of individuals photographed during boat-based tourism and research in Brazil and South Africa from 1989 to 2022. Fluke images were uploaded to Happywhale, a global digital database for marine mammal identification. Six whales were recaptured between countries from 2002 to 2021 with resighting intervals ranging from 0.76 to 12.92 years. Four whales originally photographed off Abrolhos Bank, Brazil were photographed off the Western Cape, South Africa (feeding grounds for B2). Two whales originally photographed off the Western Cape were photographed off Brazil, one traveling to the Eastern Cape in the Southwestern Indian Ocean (a migration corridor for C1) before migrating westward to Brazil. These findings photographically confirm interchange of humpback whales across the South Atlantic and Indian Oceans and the importance of international collaboration to understand population boundaries.


Subject(s)
Humpback Whale , Animals , Atlantic Ocean , Seasons , Indian Ocean , Brazil
5.
Biol Lett ; 18(2): 20210547, 2022 02.
Article in English | MEDLINE | ID: mdl-35168377

ABSTRACT

Humpback whales that assemble on winter breeding grounds in Mexico and Hawaii have been presumed to be, at least, seasonally isolated. Recently, these assemblies were declared Distinct Population Segments under the US Endangered Species Act. We report two humpback whales attending both breeding grounds in the same season-one moving from Hawaii to Mexico and the other from Mexico to Hawaii. The first was photo-identified in Maui, Hawaii on 23 February 2006 and again, after 53 days and 4545 km, on 17 April 2006 in the Revillagigedo Archipelago, Mexico. The second was photo-identified off Guerrero, Mexico on 16 February 2018 and again, 49 days and 5944 km later, on 6 April 2018 off Maui. The 2006 whale was identified in summer off Kodiak Island, Alaska; the 2018 whale off British Columbia. These Mexico-Hawaii identifications provide definitive evidence that whales in these two winter assemblies may mix during one winter season. This, combined with other lines of evidence on Mexico-Hawaii mixing, including interchange of individuals year to year, long-term similarity of everchanging songs, one earlier same-season travel record, and detection of humpback whales mid-ocean between these locations in winter, suggests reassessment of the 'distinctiveness' of these populations may be warranted.


Subject(s)
Humpback Whale , Alaska , Animals , Hawaii , Mexico , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...